Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
medRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38712091

RESUMEN

Obsessive-compulsive disorder (OCD) affects ~1% of the population and exhibits a high SNP-heritability, yet previous genome-wide association studies (GWAS) have provided limited information on the genetic etiology and underlying biological mechanisms of the disorder. We conducted a GWAS meta-analysis combining 53,660 OCD cases and 2,044,417 controls from 28 European-ancestry cohorts revealing 30 independent genome-wide significant SNPs and a SNP-based heritability of 6.7%. Separate GWAS for clinical, biobank, comorbid, and self-report sub-groups found no evidence of sample ascertainment impacting our results. Functional and positional QTL gene-based approaches identified 249 significant candidate risk genes for OCD, of which 25 were identified as putatively causal, highlighting WDR6, DALRD3, CTNND1 and genes in the MHC region. Tissue and single-cell enrichment analyses highlighted hippocampal and cortical excitatory neurons, along with D1- and D2-type dopamine receptor-containing medium spiny neurons, as playing a role in OCD risk. OCD displayed significant genetic correlations with 65 out of 112 examined phenotypes. Notably, it showed positive genetic correlations with all included psychiatric phenotypes, in particular anxiety, depression, anorexia nervosa, and Tourette syndrome, and negative correlations with a subset of the included autoimmune disorders, educational attainment, and body mass index.. This study marks a significant step toward unraveling its genetic landscape and advances understanding of OCD genetics, providing a foundation for future interventions to address this debilitating disorder.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38650085

RESUMEN

Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of KCNB1, a deletion at 15q11.2, and a duplication at 15q26.1. The KCNB1 variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This KCNB1 substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.

3.
medRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496634

RESUMEN

To date, four genome-wide association studies (GWAS) of obsessive-compulsive disorder (OCD) have been published, reporting a high single-nucleotide polymorphism (SNP)-heritability of 28% but finding only one significant SNP. A substantial increase in sample size will likely lead to further identification of SNPs, genes, and biological pathways mediating the susceptibility to OCD. We conducted a GWAS meta-analysis with a 2-3-fold increase in case sample size (OCD cases: N = 37,015, controls: N = 948,616) compared to the last OCD GWAS, including six previously published cohorts (OCGAS, IOCDF-GC, IOCDF-GC-trio, NORDiC-nor, NORDiC-swe, and iPSYCH) and unpublished self-report data from 23andMe Inc. We explored the genetic architecture of OCD by conducting gene-based tests, tissue and celltype enrichment analyses, and estimating heritability and genetic correlations with 74 phenotypes. To examine a potential heterogeneity in our data, we conducted multivariable GWASs with MTAG. We found support for 15 independent genome-wide significant loci (14 new) and 79 protein-coding genes. Tissue enrichment analyses implicate multiple cortical regions, the amygdala, and hypothalamus, while cell type analyses yielded 12 cell types linked to OCD (all neurons). The SNP-based heritability of OCD was estimated to be 0.08. Using MTAG we found evidence for specific genetic underpinnings characteristic of different cohort-ascertainment and identified additional significant SNPs. OCD was genetically correlated with 40 disorders or traits-positively with all psychiatric disorders and negatively with BMI, age at first birth and multiple autoimmune diseases. The GWAS meta-analysis identified several biologically informative genes as important contributors to the aetiology of OCD. Overall, we have begun laying the groundwork through which the biology of OCD will be understood and described.

4.
Res Sq ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38260575

RESUMEN

Current genetic research on obsessive-compulsive disorder (OCD) supports contributions to risk specifically from common single nucleotide variants (SNVs), along with rare coding SNVs and small insertion-deletions (indels). The contribution to OCD risk from large, rare copy number variants (CNVs), however, has not been formally assessed at a similar scale. Here we describe an analysis of rare CNVs called from genotype array data in 2,248 deeply phenotyped OCD cases and 3,608 unaffected controls from Sweden and Norway. We found that in general cases carry an elevated burden of large (>30kb, at least 15 probes) CNVs (OR=1.12, P=1.77×10-3). The excess rate of these CNVs in cases versus controls was around 0.07 (95% CI 0.02-0.11, P=2.58×10-3). This signal was largely driven by CNVs overlapping protein-coding regions (OR=1.19, P=3.08×10-4), particularly deletions impacting loss-of-function intolerant genes (pLI>0.995, OR=4.12, P=2.54×10-5). We did not identify any specific locus where CNV burden was associated with OCD case status at genome-wide significance, but we noted non-random recurrence of CNV deletions in cases (permutation P = 2.60×10-3). In cases where sufficient clinical data were available (n=1612) we found that carriers of neurodevelopmental duplications were more likely to have comorbid autism (P<0.001), and that carriers of deletions overlapping neurodevelopmental genes had lower treatment response (P=0.02). The results demonstrate a contribution of large, rare CNVs to OCD risk, and suggest that studies of rare coding variation in OCD would have increased power to identify risk genes if this class of variation were incorporated into formal tests.

5.
BMC Psychiatry ; 23(1): 863, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990202

RESUMEN

BACKGROUND: The Avoidant Restrictive Food Intake Disorder - Genes and Environment (ARFID-GEN) study is a study of genetic and environmental factors that contribute to risk for developing ARFID in children and adults. METHODS: A total of 3,000 children and adults with ARFID from the United States will be included. Parents/guardians and their children with ARFID (ages 7 to 17) and adults with ARFID (ages 18 +) will complete comprehensive online consent, parent verification of child assent (when applicable), and phenotyping. Enrolled participants with ARFID will submit a saliva sample for genotyping. A genome-wide association study of ARFID will be conducted. DISCUSSION: ARFID-GEN, a large-scale genetic study of ARFID, is designed to rapidly advance the study of the genetics of eating disorders. We will explicate the genetic architecture of ARFID relative to other eating disorders and to other psychiatric, neurodevelopmental, and metabolic disorders and traits. Our goal is for ARFID to deliver "actionable" findings that can be transformed into clinically meaningful insights. TRIAL REGISTRATION: ARFID-GEN is a registered clinical trial: clinicaltrials.gov NCT05605067.


Asunto(s)
Trastorno de la Ingesta Alimentaria Evitativa/Restrictiva , Trastornos de Alimentación y de la Ingestión de Alimentos , Adulto , Niño , Humanos , Estudio de Asociación del Genoma Completo , Motivación , Estudios Retrospectivos
6.
BMJ Open ; 13(10): e069427, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37793927

RESUMEN

PURPOSE: Depression and anxiety afflict millions worldwide causing considerable disability. MULTI-PSYCH is a longitudinal cohort of genotyped and phenotyped individuals with depression or anxiety disorders who have undergone highly structured internet-based cognitive-behaviour therapy (ICBT). The overarching purpose of MULTI-PSYCH is to improve risk stratification, outcome prediction and secondary preventive interventions. MULTI-PSYCH is a precision medicine initiative that combines clinical, genetic and nationwide register data. PARTICIPANTS: MULTI-PSYCH includes 2668 clinically well-characterised adults with major depressive disorder (MDD) (n=1300), social anxiety disorder (n=640) or panic disorder (n=728) assessed before, during and after 12 weeks of ICBT at the internet psychiatry clinic in Stockholm, Sweden. All patients have been blood sampled and genotyped. Clinical and genetic data have been linked to several Swedish registers containing a wide range of variables from patient birth up to 10 years after the end of ICBT. These variable types include perinatal complications, school grades, psychiatric and somatic comorbidity, dispensed medications, medical interventions and diagnoses, healthcare and social benefits, demographics, income and more. Long-term follow-up data will be collected through 2029. FINDINGS TO DATE: Initial uses of MULTI-PSYCH include the discovery of an association between PRS for autism spectrum disorder and response to ICBT, the development of a machine learning model for baseline prediction of remission status after ICBT in MDD and data contributions to genome wide association studies for ICBT outcome. Other projects have been launched or are in the planning phase. FUTURE PLANS: The MULTI-PSYCH cohort provides a unique infrastructure to study not only predictors or short-term treatment outcomes, but also longer term medical and socioeconomic outcomes in patients treated with ICBT for depression or anxiety. MULTI-PSYCH is well positioned for research collaboration.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Adulto , Embarazo , Femenino , Humanos , Suecia , Depresión/terapia , Trastorno Depresivo Mayor/terapia , Estudio de Asociación del Genoma Completo , Trastornos de Ansiedad/terapia , Trastornos de Ansiedad/diagnóstico , Ansiedad/terapia , Psicoterapia , Resultado del Tratamiento , Internet
7.
Res Sq ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693386

RESUMEN

Background: The Avoidant Restrictive Food Intake Disorder Genes and Environment (ARFID-GEN) study is a study of genetic and environmental factors that contribute to risk for developing ARFID in children and adults. Methods: A total of 3,000 children and adults with ARFID from the United States will be included. Parents/guardians and their children with ARFID (ages 7 to 17) and adults with ARFID (ages 18+) will complete comprehensive online consent, parent verification of child assent (when applicable), and phenotyping. Enrolled participants with ARFID will submit a saliva sample for genotyping. A genome-wide association study of ARFID will be conducted. Discussion: ARFID-GEN, a large-scale genetic study of ARFID, is designed to rapidly advance the study of the genetics of eating disorders. We will explicate the genetic architecture of ARFID relative to other eating disorders and to other psychiatric, neurodevelopmental, and metabolic disorders and traits. Our goal is for ARFID to deliver "actionable" findings that can be transformed into clinically meaningful insights. Trial registration: ARFID-GEN is a registered clinical trial: clinicaltrials.gov NCT05605067.

8.
medRxiv ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37131580

RESUMEN

Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of KCNB1, a deletion at 15q11.2, and a duplication at 15q26.1. The KCNB1 variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This KCNB1 substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.

9.
Mol Psychiatry ; 28(1): 475-482, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380236

RESUMEN

Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia. Using genome sequence data from 1154 Swedish schizophrenia cases and 934 ancestry-matched population controls, we have detected genome-wide rare (<0.1% population frequency) TREs that have motifs with a length of 2-20 base pairs. We find that the proportion of individuals carrying rare TREs is significantly higher in the schizophrenia group. There is a significantly higher burden of rare TREs in schizophrenia cases than in controls in genic regions, particularly in postsynaptic genes, in genes overlapping brain expression quantitative trait loci, and in brain-expressed genes that are differentially expressed between schizophrenia cases and controls. We demonstrate that TRE-associated genes are more constrained and primarily impact synaptic and neuronal signaling functions. These results have been replicated in an independent Canadian sample that consisted of 252 schizophrenia cases of European ancestry and 222 ancestry-matched controls. Our results support the involvement of rare TREs in schizophrenia etiology.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Canadá , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética
10.
Psychol Med ; 53(7): 3021-3035, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35243971

RESUMEN

BACKGROUND: Clinical, epidemiological, and genetic findings support an overlap between eating disorders, obsessive-compulsive disorder (OCD), and anxiety symptoms. However, little research has examined the role of genetics in the expression of underlying phenotypes. We investigated whether the anorexia nervosa (AN), OCD, or AN/OCD transdiagnostic polygenic scores (PGS) predict eating disorder, OCD, and anxiety symptoms in a large developmental cohort in a sex-specific manner. METHODS: Using summary statistics from Psychiatric Genomics Consortium AN and OCD genome-wide association studies, we conducted an AN/OCD transdiagnostic genome-wide association meta-analysis. We then calculated AN, OCD, and AN/OCD PGS in participants from the Avon Longitudinal Study of Parents and Children to predict eating disorder, OCD, and anxiety symptoms, stratified by sex (combined N = 3212-5369 per phenotype). RESULTS: The PGS prediction of eating disorder, OCD, and anxiety phenotypes differed between sexes, although effect sizes were small. AN and AN/OCD PGS played a more prominent role in predicting eating disorder and anxiety risk than OCD PGS, especially in girls. AN/OCD PGS provided a small boost over AN PGS in the prediction of some anxiety symptoms. All three PGS predicted higher compulsive exercise across different developmental timepoints [ß = 0.03 (s.e. = 0.01) for AN and AN/OCD PGS at age 14; ß = 0.05 (s.e. = 0.02) for OCD PGS at age 16] in girls. CONCLUSIONS: Compulsive exercise may have a transdiagnostic genetic etiology, and AN genetic risk may play a role in the presence of anxiety symptoms. Converging with prior twin literature, our results also suggest that some of the contribution of genetic risk may be sex-specific.


Asunto(s)
Anorexia Nerviosa , Trastornos de Alimentación y de la Ingestión de Alimentos , Trastorno Obsesivo Compulsivo , Masculino , Femenino , Humanos , Anorexia Nerviosa/epidemiología , Estudios Longitudinales , Estudio de Asociación del Genoma Completo , Comorbilidad , Trastorno Obsesivo Compulsivo/epidemiología , Trastorno Obsesivo Compulsivo/genética , Trastorno Obsesivo Compulsivo/diagnóstico , Ansiedad/genética
11.
Transl Psychiatry ; 12(1): 357, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050305

RESUMEN

This study applied supervised machine learning with multi-modal data to predict remission of major depressive disorder (MDD) after psychotherapy. Genotyped adult patients (n = 894, 65.5% women, age 18-75 years) diagnosed with mild-to-moderate MDD and treated with guided Internet-based Cognitive Behaviour Therapy (ICBT) at the Internet Psychiatry Clinic in Stockholm were included (2008-2016). Predictor types were demographic, clinical, process (e.g., time to complete online questionnaires), and genetic (polygenic risk scores). Outcome was remission status post ICBT (cut-off ≤10 on MADRS-S). Data were split into train (60%) and validation (40%) given ICBT start date. Predictor selection employed human expertise followed by recursive feature elimination. Model derivation was internally validated through cross-validation. The final random forest model was externally validated against a (i) null, (ii) logit, (iii) XGBoost, and (iv) blended meta-ensemble model on the hold-out validation set. Feature selection retained 45 predictors representing all four predictor types. With unseen validation data, the final random forest model proved reasonably accurate at classifying post ICBT remission (Accuracy 0.656 [0.604, 0.705], P vs null model = 0.004; AUC 0.687 [0.631, 0.743]), slightly better vs logit (bootstrap D = 1.730, P = 0.084) but not vs XGBoost (D = 0.463, P = 0.643). Transparency analysis showed model usage of all predictor types at both the group and individual patient level. A new, multi-modal classifier for predicting MDD remission status after ICBT treatment in routine psychiatric care was derived and empirically validated. The multi-modal approach to predicting remission may inform tailored treatment, and deserves further investigation to attain clinical usefulness.


Asunto(s)
Trastorno Depresivo Mayor , Adolescente , Adulto , Anciano , Depresión/terapia , Trastorno Depresivo Mayor/terapia , Femenino , Humanos , Internet , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Psicoterapia , Resultado del Tratamiento , Adulto Joven
13.
Am J Psychiatry ; 179(3): 216-225, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34789012

RESUMEN

OBJECTIVE: Obsessive-compulsive disorder (OCD) is known to be substantially heritable; however, the contribution of genetic variation across the allele frequency spectrum to this heritability remains uncertain. The authors used two new homogeneous cohorts to estimate the heritability of OCD from inherited genetic variation and contrasted the results with those of previous studies. METHODS: The sample consisted of 2,090 Swedish-born individuals diagnosed with OCD and 4,567 control subjects, all genotyped for common genetic variants, specifically >400,000 single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥0.01. Using genotypes of these SNPs to estimate distant familial relationships among individuals, the authors estimated the heritability of OCD, both overall and partitioned according to MAF bins. RESULTS: Narrow-sense heritability of OCD was estimated at 29% (SE=4%). The estimate was robust, varying only modestly under different models. Contrary to an earlier study, however, SNPs with MAF between 0.01 and 0.05 accounted for 10% of heritability, and estimated heritability per MAF bin roughly followed expectations based on a simple model for SNP-based heritability. CONCLUSIONS: These results indicate that common inherited risk variation (MAF ≥0.01) accounts for most of the heritable variation in OCD. SNPs with low MAF contribute meaningfully to the heritability of OCD, and the results are consistent with expectation under the "infinitesimal model" (also referred to as the "polygenic model"), where risk is influenced by a large number of loci across the genome and across MAF bins.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastorno Obsesivo Compulsivo , Alelos , Estudio de Asociación del Genoma Completo/métodos , Humanos , Herencia Multifactorial , Trastorno Obsesivo Compulsivo/diagnóstico , Trastorno Obsesivo Compulsivo/genética , Polimorfismo de Nucleótido Simple/genética
14.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930847

RESUMEN

Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 "trios" (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10-4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C Both RYR2 mutations are pathogenic (P = 1.7 × 10-7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10-7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.


Asunto(s)
Arritmias Cardíacas/genética , Señalización del Calcio/genética , Muerte Súbita , Epilepsia/genética , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación/genética , Secuenciación del Exoma
15.
Front Genet ; 12: 711624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531895

RESUMEN

Among patients with obsessive-compulsive disorder (OCD), 65-85% manifest another psychiatric disorder concomitantly or at some other time point during their life. OCD is highly heritable, as are many of its comorbidities. A possible genetic heterogeneity of OCD in relation to its comorbid conditions, however, has not yet been exhaustively explored. We used a framework of different approaches to study the genetic relationship of OCD with three commonly observed comorbidities, namely major depressive disorder (MDD), attention-deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD). First, using publicly available summary statistics from large-scale genome-wide association studies, we compared genetic correlation patterns for OCD, MDD, ADHD, and ASD with 861 somatic and mental health phenotypes. Secondly, we examined how polygenic risk scores (PRS) of eight traits that showed heterogeneous correlation patterns with OCD, MDD, ADHD, and ASD partitioned across comorbid subgroups in OCD using independent unpublished data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH). The comorbid subgroups comprised of patients with only OCD (N = 366), OCD and MDD (N = 1,052), OCD and ADHD (N = 443), OCD and ASD (N = 388), and OCD with more than 1 comorbidity (N = 429). We found that PRS of all traits but BMI were significantly associated with OCD across all subgroups (neuroticism: p = 1.19 × 10-32, bipolar disorder: p = 7.51 × 10-8, anorexia nervosa: p = 3.52 × 10-20, age at first birth: p = 9.38 × 10-5, educational attainment: p = 1.56 × 10-4, OCD: p = 1.87 × 10-6, insomnia: p = 2.61 × 10-5, BMI: p = 0.15). For age at first birth, educational attainment, and insomnia PRS estimates significantly differed across comorbid subgroups (p = 2.29 × 10-4, p = 1.63 × 10-4, and p = 0.045, respectively). Especially for anorexia nervosa, age at first birth, educational attainment, insomnia, and neuroticism the correlation patterns that emerged from genetic correlation analysis of OCD, MDD, ADHD, and ASD were mirrored in the PRS associations with the respective comorbid OCD groups. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across OCD comorbid subgroups.

16.
Mol Psychiatry ; 26(12): 7522-7529, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34526668

RESUMEN

Tourette syndrome (TS) is a highly heritable neuropsychiatric disorder with complex patterns of genetic inheritance. Recent genetic findings in TS have highlighted both numerous common variants with small effects and a few rare variants with moderate or large effects. Here we searched for genetic causes of TS in a large, densely-affected British pedigree using a systematic genomic approach. This pedigree spans six generations and includes 122 members, 85 of whom were individually interviewed, and 53 of whom were diagnosed as "cases" (consisting of 28 with definite or probable TS, 20 with chronic multiple tics [CMT], and five with obsessive-compulsive behaviors [OCB]). A total of 66 DNA samples were available (25 TS, 15 CMT, 4 OCB cases, and 22 unaffecteds) and all were genotyped using a dense single nucleotide polymorphism (SNP) array to identify shared segments, copy number variants (CNVs), and to calculate genetic risk scores. Eight cases were also whole genome sequenced to test whether any rare variants were shared identical by descent. While we did not identify any notable CNVs, single nucleotide variants, indels or repeat expansions of near-Mendelian effect, the most distinctive feature of this family proved to be an unusually high load of common risk alleles for TS. We found that cases within this family carried a higher load of TS common variant risk similar to that previously found in unrelated TS cases. Thus far, the strongest evidence from genetic data for contribution to TS risk in this family comes from multiple common risk variants rather than one or a few variants of strong effect.


Asunto(s)
Trastornos de Tic , Síndrome de Tourette , Humanos , Linaje , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Síndrome de Tourette/genética
17.
Nat Commun ; 11(1): 1842, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296054

RESUMEN

Despite considerable progress in schizophrenia genetics, most findings have been for large rare structural variants and common variants in well-imputed regions with few genes implicated from exome sequencing. Whole genome sequencing (WGS) can potentially provide a more complete enumeration of etiological genetic variation apart from the exome and regions of high linkage disequilibrium. We analyze high-coverage WGS data from 1162 Swedish schizophrenia cases and 936 ancestry-matched population controls. Our main objective is to evaluate the contribution to schizophrenia etiology from a variety of genetic variants accessible to WGS but not by previous technologies. Our results suggest that ultra-rare structural variants that affect the boundaries of topologically associated domains (TADs) increase risk for schizophrenia. Alterations in TAD boundaries may lead to dysregulation of gene expression. Future mechanistic studies will be needed to determine the precise functional effects of these variants on biology.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Esquizofrenia/genética , Encéfalo/metabolismo , Exoma/genética , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Sistema Nervioso/metabolismo , Control de Calidad , Análisis de Secuencia de ADN
18.
Am J Med Genet B Neuropsychiatr Genet ; 183(1): 38-50, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31424634

RESUMEN

Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder, yet its etiology is unknown and treatment outcomes could be improved if biological targets could be identified. Unfortunately, genetic findings for OCD are lagging behind other psychiatric disorders. Thus, there is a pressing need to understand the causal mechanisms implicated in OCD in order to improve clinical outcomes and to reduce morbidity and societal costs. Specifically, there is a need for a large-scale, etiologically informative genetic study integrating genetic and environmental factors that presumably interact to cause the condition. The Nordic countries provide fertile ground for such a study, given their detailed population registers, national healthcare systems and active specialist clinics for OCD. We thus formed the Nordic OCD and Related Disorders Consortium (NORDiC, www.crowleylab.org/nordic), and with the support of NIMH and the Swedish Research Council, have begun to collect a large, richly phenotyped and genotyped sample of OCD cases. Our specific aims are geared toward answering a number of key questions regarding the biology, etiology, and treatment of OCD. This article describes and discusses the rationale, design, and methodology of NORDiC, including details on clinical measures and planned genomic analyses.


Asunto(s)
Trastorno Obsesivo Compulsivo/epidemiología , Trastorno Obsesivo Compulsivo/etiología , Femenino , Humanos , Masculino , Trastorno Obsesivo Compulsivo/genética , Sistema de Registros , Países Escandinavos y Nórdicos
19.
Mol Psychiatry ; 25(9): 2036-2046, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30087453

RESUMEN

Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are often comorbid and likely to share genetic risk factors. Hence, we examine their shared genetic background using a cross-disorder GWAS meta-analysis of 3495 AN cases, 2688 OCD cases, and 18,013 controls. We confirmed a high genetic correlation between AN and OCD (rg = 0.49 ± 0.13, p = 9.07 × 10-7) and a sizable SNP heritability (SNP h2 = 0.21 ± 0.02) for the cross-disorder phenotype. Although no individual loci reached genome-wide significance, the cross-disorder phenotype showed strong positive genetic correlations with other psychiatric phenotypes (e.g., rg = 0.36 with bipolar disorder and 0.34 with neuroticism) and negative genetic correlations with metabolic phenotypes (e.g., rg = -0.25 with body mass index and -0.20 with triglycerides). Follow-up analyses revealed that although AN and OCD overlap heavily in their shared risk with other psychiatric phenotypes, the relationship with metabolic and anthropometric traits is markedly stronger for AN than for OCD. We further tested whether shared genetic risk for AN/OCD was associated with particular tissue or cell-type gene expression patterns and found that the basal ganglia and medium spiny neurons were most enriched for AN-OCD risk, consistent with neurobiological findings for both disorders. Our results confirm and extend genetic epidemiological findings of shared risk between AN and OCD and suggest that larger GWASs are warranted.


Asunto(s)
Anorexia Nerviosa , Trastorno Obsesivo Compulsivo , Anorexia Nerviosa/genética , Índice de Masa Corporal , Comorbilidad , Estudio de Asociación del Genoma Completo , Humanos , Trastorno Obsesivo Compulsivo/genética , Fenotipo
20.
Mol Genet Genomic Med ; 8(1): e1008, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31705601

RESUMEN

BACKGROUND: Sudden death in children is a tragic event that often remains unexplained after comprehensive investigation. We report two asymptomatic siblings who died unexpectedly at approximately 1 year of age found to have biallelic (compound heterozygous) variants in PPA2. METHODS: The index case, parents, and sister were enrolled in the Sudden Unexplained Death in Childhood Registry and Research Collaborative, which included next-generation genetic screening. Prior published cases of PPA2 variants, along with the known biology of PPA2, were also summarized. RESULTS: Whole exome sequencing in both siblings revealed biallelic rare missense variants in PPA2: c.182C > T (p.Ser61Phe) and c.380G > T (p.Arg127Leu). PPA2 encodes a mitochondrially located inorganic pyrophosphatase implicated in progressive and lethal cardiomyopathies. As a regulator and supplier of inorganic phosphate, PPA2 is central to phosphate metabolism. Biological roles include the following: mtDNA maintenance; oxidative phosphorylation and generation of ATP; reactive oxygen species homeostasis; mitochondrial membrane potential regulation; and possibly, retrograde signaling between mitochondria and nucleus. CONCLUSIONS: Two healthy and asymptomatic sisters died unexpectedly at ages 12 and 10 months, and were diagnosed by molecular autopsy to carry biallelic variants in PPA2. Our cases add additional details to those reported thus far, and broaden the spectrum of clinical and molecular features of PPA2 variants.


Asunto(s)
Muerte Súbita Cardíaca , Pirofosfatasa Inorgánica/genética , Proteínas Mitocondriales/genética , Mutación Missense , Muerte Súbita del Lactante/genética , Femenino , Heterocigoto , Humanos , Lactante , Linaje , Muerte Súbita del Lactante/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...